

Markscheme

May 2018

Chemistry

Higher level

Paper 3

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Section A

- 3 -

Q	uesti	ion	Answers	Notes	Total
1.	а	i	H H H H H H H H H H H H H H H H H H H	Must cut CH ₂ –CO bond AND enclose all of the –COOH group.	1
1.	а	ii	 Any two of: -COOH/CO/OH/carboxylate/carboxyl/hydroxyl/hydroxy group forms hydrogen bonds/H-bonds to water ✓ London/dispersion/instantaneous induced dipole-induced dipole forces occur between hydrocarbon chains ✓ hydrocarbon chain cannot form hydrogen bonds/H-bonds to water ✓ strong hydrogen bonds/H-bonds between water molecules exclude hydrocarbon chains «from the body of the water» ✓ 	Accept "hydrophilic part/group forms hydrogen bonds/H-bonds to water". Accept "hydrophobic section" instead of "hydrocarbon chain". Award [1 max] for answers based on "the –COOH group being polar AND the hydrocarbon chain being non-polar".	2 max

C)uesti	on	Answers	Notes	Total
1.	b	i	Above about 240 cm²: greater collision frequency/collisions per second between «palmitic acid» molecules and the barrier «as area reduced» √ At less than about 240 cm²: molecules completely cover the surface OR there is no space between molecules OR force from movable barrier transmitted directly through the molecules to the fixed barrier OR equal to the fixed barrier or or there is no space between molecules or or force from movable barrier transmitted directly through the molecules to the fixed barrier or o	For both M1 and M2 accept "particles" for "molecules". For M1 accept "space/area between molecules is reduced" OR "molecules moving closer together".	2
1.	b	ii	amount of acid = $(45.0 \times 10^{-5} \text{ dm}^3 \times 0.0034 \text{ mol dm}^{-3}) = 1.7 \times 10^{-7} \text{ (mol)} $	Award [2] for correct final answer. Award [1] for "1.0 \times 10 ²⁰ ".	2
1.	b	iii	«area = $\frac{240 \text{ cm}^2}{1.0 \times 10^{17}}$ » 2.4 × 10 ⁻¹⁵ «cm ² » ✓		1

C	uesti	on	Answers	Notes	Total
2.	а		$CaCO_{3}(s) + 2HCl(aq) \rightarrow CaCl_{2}(aq) + CO_{2}(g) + H_{2}O(l) \checkmark$	Accept "CO ₂ (aq)".	1
2.	b		measure the volume of gas at different times «plot a graph and extrapolate» OR measure the mass of the reaction mixture at different times «plot a graph and extrapolate» ✓	Accept other techniques that yield data which can be plotted and extrapolated.	1
2.	С	i	 method 2 <i>AND</i> the marble is in excess «so a little extra has little effect» <i>OR</i> large chips <i>AND</i> the marble is in excess «so a little extra has little effect» <i>OR</i> method 2 <i>AND</i> HCl is limiting reagent «so a little extra marble has little effect» <i>OR</i> large chips <i>AND</i> HCl is limiting reagent «so a little extra marble has little effect» 	Accept, as a reason, that "as the mass is greater the percentage variation will be lower".	1
2.	С	11	surface area <i>OR</i> purity «of the marble» √	Accept "shape of the chip".	1
2.	d	i	variation of individual values is much greater «than this uncertainty» <i>OR</i> «uncertainty» does not take into account «student» reaction time √		1
2.	d	ii	$\ll \frac{121.96\text{s}}{2} = 60.98\text{s} \text{s} = 61\text{s} \text{s} \text{\checkmark}$		1
2.	d	iii	systematic <i>AND</i> always makes the time shorter «than the actual value» <i>OR</i> systematic <i>AND</i> it is an error in the method used «not an individual measurement» <i>OR</i> systematic <i>AND</i> more repetitions would not reduce the error √	Accept, as reasons, "it always affects the value in the same direction" OR "the error is consistent".	1

Section B

Option A — Materials

Question		on	Answers	Notes	Total
3.	а		«close packed» lattice of metal atoms/ions \checkmark no spaces for water molecules to pass though the structure \checkmark		2
3.	b	i	composite ✓		1
3.	b	ii	melting point <i>OR</i> permeability <i>OR</i> density <i>OR</i> conductivity <i>OR</i> elasticity/stiffness <i>OR</i> brittleness/flexibility <i>OR</i> wtensile» strength √	Accept "colour/transparency".	1

(Question 3b continued)

Question		on	Answers	Notes	Total
3.	b	III	Any three of: hydrocarbon/carbon-containing gas/compound ✓ mixed with inert gas ✓ heat/high temperature ✓ «transition» metal catalyst ✓ hydrocarbon/carbon compound decomposes to form carbon «nanotubes» ✓ nanotubes form on catalyst surface ✓	Accept "ethanol" or specific hydrocarbons. Accept "N ₂ ", "H ₂ ", "NH ₃ " or specific inert gases. Accept temperature or range within 600–800 °C. Accept specific metals such as Ni, Co or Fe.	3 max
3.	b	iv	rod shaped molecules \checkmark		1

C	Question		Answers	Notes	Total
4.	а	i	both have «long» hydrocarbon chains <i>OR</i> both have chains comprising CH₂ units ✓	Accept "CH ₂ –CH ₂ units".	2
			HDPE has little/no branching AND LDPE has «more» branching \checkmark	Accept "HDPE more crystalline".	
4.	a	ii	HDPE is more rigid/less flexible <i>OR</i> HDPE has a higher melting point <i>OR</i> HDPE has greater «tensile» strength √	Accept "HDPE has lower ductility".	1
4.	b	i	form «temporary» activated complexes/reaction intermediates ✓	Accept "consumed in one reaction/step AND regenerated in a later reaction/step". Accept "provides alternative mechanism".	1
4.	b	ii	inductively coupled plasma/ICP spectroscopy using mass spectroscopy/mass spectrometry/MS/ICP-MS <i>OR</i> inductively coupled plasma/ICP spectroscopy using optical emission spectroscopy/OES/ICP-OES ✓	Accept "atomic absorption/aa spectroscopy" or "MS/mass- spectroscopy/mass spectrometry".	1

Question		ion	Answers	Notes	Total
4.	С	i	$H_2N \longrightarrow OH$ $-NH_2 AND -COOH \checkmark$ six C-atoms \checkmark	Accept –COCl instead of –COOH.	2
4.	С	ii	less <i>AND</i> a second molecule/product formed ✓	Accept "not all the reactant molecules «in the equation» are converted «to product molecules»".	1
4.	d		Any two of: many types «of plastics» exist OR «plastics» require sorting «by type» ✓ «plastics» need to be separated from non-plastic materials OR «often» composites/moulded on/bound to non-plastic/other components √	Accept other valid factors such as thermal decomposition of some plastics, production of toxic fumes, etc.	2
4.	е		«different classifications are appropriate for» different properties/applications/ purposes √		1

C	uesti	on	Answers	Notes	Total
5.	а		ratio of electrons : aluminium ions = 3 : 1 \checkmark amount Al $\ll \frac{1.296 \times 10^{13} \text{ C}}{96500 \text{ Cmol}^{-1} \times 3}$ = 4.48 × 10 ⁷ «mol» \checkmark mass Al «= 4.48 × 10 ⁷ mol × 26.98 g mol^{-1}» = 1.21 × 10 ⁹ «g» \checkmark	Award [3] for correct final answer.	3
5.	b		the smallest repeating unit «from which the crystal structure can be derived» \checkmark	Accept "building block that the structure is made from".	1
5.	С			Award [2] for correct final answer.	2
5.	d	i	type 1 ✓ superconductor ✓		2
5.	d	ii	collisions between electrons and «lattice of metal» ions become more frequent <i>OR</i> thermal oscillations/vibrations disrupt the Cooper electron pairs √		1
5.	e		$K_{sp} = [Al^{3+}] [OH^{-}]^{3} \ll 3.3 \times 10^{-34} \text{ solution} \checkmark$ $[Al^{3+}] = \ll \frac{3.3 \times 10^{-34}}{(1 \times 10^{-7})^{3}} = 3.3 \times 10^{-13} \text{ solution} \textrm{ solution} \checkmark$	Award [2] for correct final answer.	2

C	uestion	Answers	Notes	Total
6.	a	$H_{2}N - CH - C - NH - CH - COOH$ $H_{3}C - CH_{3} - C - NH_{2}$ OR $H_{2}N - CH - C - NH - CH - COOH$ $H_{3}N - C - NH - CH - COOH$ $H_{2}N - CH - C - NH - CH - COOH$ $H_{2}N - CH - C - NH - CH - COOH$ $H_{2}N - CH - C - NH - CH - COOH$ $H_{3}N - C - NH - CH - COOH$ $H_{3}N - C - NH - CH - COOH$ $H_{3}N - C - NH - CH - COOH$ $H_{3}N - C - NH - CH - COOH$ $H_{3}N - C - NH - CH - COOH$ $H_{3}N - C - NH - CH - COOH$ $H_{3}N - C - NH - CH - COOH$ $H_{3}N - C - NH - CH - COOH$ $H_{3}N - C - NH - CH - CH - COOH$ $H_{3}N - C - NH - CH - CH - COOH$ $H_{3}N - C - NH - CH - CH - COOH$ $H_{3}N - C - NH - CH - CH - CH - CH - CH - CH$		2
6.	b	 Phenylalanine and valine: London/dispersion/instantaneous induced dipole-induced dipole forces OR permanent dipole-induced dipole «interactions» √ Glutamine and asparagine: hydrogen bonds √ 	Do not accept dipole-dipole interactions.	2

C	Question		Answers	Notes	Total
6.	с	i	hydrolysis ✓		1
6.	С	ii	compare R _f with known amino acids <i>OR</i> compare distance moved with known amino acids √	Accept "from R _f ".	1
6.	d		triplet/genetic code <i>OR</i> sequence of three bases/nucleotides ✓ instruction for «particular» amino acid √		2

Question		on	Answers	Notes	Total
7.	а		hydrolytic «rancidity» ✓ ester group ✓	Accept a formula for ester group.	2
7.	b		 «stearic acid» straight chain/chain has no kinks/more regular structure OR «stearic acid» saturated/no «carbon-carbon» double bonds √ «stearic acid» chains pack more closely together √ stronger London/dispersion/instantaneous induced dipole-induced dipole forces «between molecules» √ 	Accept "«stearic acid» greater surface area/electron density".	3 max
7.	C	i	Iowers risk of heart disease/atherosclerosis OR Iowers LDL cholesterol OR increases HDL cholesterol OR aids brain/neurological development «in children» OR relieves rheumatoid arthritis √		1
7.	с	ii	soluble <i>AND</i> non-polar hydrocarbon chain ✓	Accept as reasons "«predominantly» non-polar" OR "long hydrocarbon chain".	1

Question		on	Answers	Notes	Total
7.	c		not biodegradable OR stored/accumulate in fat ✓ biomagnification occurs OR concentration increases along food chain ✓	Accept "stored/accumulate in bodies of prey/animals eaten". Accept "not excreted".	2
7.	С	iv	add starch/cellulose/carbohydrates/additives/catalysts «to plastic during manufacture to allow digestion by micro-organisms» <i>OR</i> replace traditional plastics with polylactic acid/PLA-based ones <i>OR</i> blend traditional and polylactic acid/PLA-based plastics √	Accept reference to biodegradable plastics other than PLA, for example polyhydroxyalkanoates (PHA), poly(butylene succinate) (PBS), polybutylene adipate terephthalate (PBAT) and polycaprolactone (PCL).	1

C	Question	Answers	Notes	Total
8.	a	Glucose: readily passes through intestine wall/dissolves in blood OR is immediately available for energy/respiration OR transported rapidly around body √ Starch: must be hydrolysed/broken down «into smaller molecules» first √		2
8.	b	<i>Any two of:</i> long straight/unbranched chains ✓ multiple hydrogen bonds «between chains» ✓ microfibrils <i>OR</i> rigid/cable structure ✓		2 max

(Question	Answers	Notes	Total
9.	а	binds at allosteric site OR binds away from active site ✓ changes shape of active site OR renders active sites ineffective ✓		2
9.	b	K_m is inverse measure of affinity of enzyme for a substrate OR K_m is inversely proportional to enzyme activity OR high value of K_m indicates higher substrate concentration needed for enzyme saturation OR low value of K_m means reaction is fast at low substrate concentration \checkmark	Idea of inverse relationship must be conveyed. Accept "high value of K _m indicates low affinity of enzyme for substrate/less stable ES complex/lower enzyme activity". Accept "low value of K _m indicates high affinity of enzyme for substrate/stable ES complex/greater enzyme activity".	1

Question

а

10.

Answers	Notes	Total
highly conjugated systems		
OR		
alternating single and double bonds		

2
3
_

Option C — Energy

Question		on	Answers	Notes	Total
11.	а	Gas	Source		
		methane/CH₄ ✓	animals		
			OR		
			anaerobic decomposition of organic waste		
			OR		
			bogs/marshes/rice paddies ✓		2
		nitrogen(I) oxide/dinitroger	bacterial action	Accept "nitrous oxide".	
		monoxide/N₂O ✓	OR		
			combustion of biomass \checkmark		
		ozone/O ₃ ✓	effect of <u>UV</u> light on oxygen/O ₂ \checkmark	Accept "electrical discharges/lightning".	
11.	b	$CO_2(aq) + H_2O(l) \rightleftharpoons H^+(ac)$) + HCO ₃ ⁻ (aq)	Accept CO ₂ (aq) + H ₂ O (l) \rightleftharpoons 2H ⁺ (aq) +	
		OR		CO_{3}^{2-} (aq).	1
			(aq) AND H ₂ CO ₃ (aq) \rightleftharpoons H ⁺ (aq) + HCO ₃ [−] (aq) \checkmark	Accept equations with single arrow.	1
11.	с	no change in polarity/dipole	«moment when molecule vibrates» \checkmark	Do not accept "non-polar" or "no dipole moment" – idea of change must be there.	1

incomplete combustion \checkmark

Question	Answers	Notes	Total
12. a	Any three of:		
	different molar masses		
	OR		
	different strengths of intermolecular forces \checkmark		
	different boiling points ✓		3 max
	temperature in «fractionating» column decreases upwards \checkmark		
	«components» condense at different temperatures/heights		
	OR		
	«component with» lower boiling point leaves column first \checkmark		
2. b i	specific energy « = $\frac{\text{energy released}}{\text{mass consumed}} = \frac{5470 \text{ kJ mol}^{-1}}{114.26 \text{ g mol}^{-1}} \approx = 47.9 \text{ «kJ g}^{-1} \text{ specific energy}$	Do not accept "–47.9 «kJ g ^{–1} »".	
	energy density $\pi = $ energy released		2
	energy density $ = \frac{\text{energy released}}{\text{volume consumed}} = \text{specific energy} \times \text{density} = 47.9 \text{ kJ g}^{-1} $	Do not accept "–33.7 «kJ cm ⁻³ »" unless	
	$\times 0.703 \mathrm{g}\mathrm{cm}^{-3}$ » = 33.7 «kJ cm ⁻³ » \checkmark	"-47.9 «kJ g ⁻¹ »" already penalized.	
2. b ii	energy is lost «to the surroundings» as heat/sound/friction	Do not accept simply "energy is lost".	
	OR		
	energy is lost to the surroundings «as heat/sound/friction»		1
	OR		

– 19 –

Question		Answers	Notes	Total
13.	а	viscosity «of vegetable oils is too high» \checkmark		
		transesterification		2
		OR «conversion into» alkyl/methyl/ethyl esters √		
13.	b	R–CO–O–CH ₃ / RCOOMe		
		OR		1
		R–CO–O–C ₂ H ₅ / RCOOEt ✓		

C	uesti	on	Answers	Notes	Total
14.	a	i	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Accept any balanced equation which shows Li oxidized to Li ⁺ for M3, such as $LiC_6 \rightarrow Li^+ + C_6 + e^-$ or $Li_xC_6 \rightarrow xLi^+ + 6C + xe^-$	3
14.	а	ii	<i>Limiting factor:</i> internal resistance «of the cell» ✓ <i>Electrodes design:</i> large surface area ✓	Accept "time it takes ions to diffuse between electrodes". Accept specific ways of increasing surface area, such as "porous electrodes". Accept "close together/small separation".	2
14.	b	i	mass spectrometry/mass spectroscopy/MS ✓	Accept "analysis of radiation emitted".	1
14.	b	II	uranium converted to uranium hexafluoride/UF ₆ gas ✓ ALTERNATIVE 1: gas «allowed to» diffuse ✓ lower mass isotope/ ²³⁵ U passes through more rapidly ✓ ALTERNATIVE 2: use of centrifuge ✓ higher mass isotope/ ²³⁸ U moves/closer to outside of centrifuge <i>OR</i> lower mass isotope/ ²³⁵ U stays in/removed from middle of centrifuge ✓		3

(Question 14b continued)

Q	Question		Answers	Notes	Total
14.	b	iii	<i>critical mass:</i> mass required so that «on average» each fission/reaction results in a further fission/reaction \checkmark	Accept "minimum mass of fuel needed for the reaction to be self-sustaining".	
			Any two for [2 max] : neutron captured by « ²³⁵ U» nucleus ✓ fission/reaction produces many neutrons/more than one neutron ✓ if these cause further fission/reaction a chain reaction occurs ✓	Accept answers in the form of suitable diagrams/equations.	3 max
14.	b	iv	produce long lived/long half-life radioisotopes/radioactivity <i>OR</i> could be used to produce nuclear weapons <i>OR</i> «nuclear» accidents/meltdowns can occur √	Accept "long lived/long half-life radioactive waste".	1

- 22 -

Q	uestion	Answers	Notes	Total
15.	а	p-type AND has 3 «valence» electrons OR p-type AND fewer electrons «than silicon» √	Do not accept "it is in group 3/13" as reason.	1
15.	b	Any two of: cheaper OR ease of fabrication √ use light of lower energy/lower frequency/longer wavelength √ absorb wider range of wavelengths √ dye converts most/all absorbed photons into electrons √ plentiful /renewable resources «to construct DSSC cells» √ operate at lower «internal» temperatures/better at radiating heat away «since constructed with thin front layer of conductive plastic compared to glass box in photovoltaic cell» √ use of nanoparticles provides large surface area exposure to sunlight/sun/light √ can absorb better under cloudy/low light conditions √ better conductivity √ more flexible √		2
15.	с	B AND has greater/more «extensive» conjugation √	Accept "more alternating single and double bonds".	1

Option D — Medicinal chemistry

Q	luesti	ion	Answers	Notes	Total
16.	а		<pre>Any one of: anticoagulant ✓ lower risk of heart attack/strokes ✓ prevent recurrence of heart attack/stroke ✓ prevent cancer of colon/oesophagus/stomach ✓</pre>	Accept "prevents/reduces blood clots" OR "blood thinner".	1 max
16.	b	i	fraction/proportion/percentage «of administered dosage» that reaches target «part of human body» <i>OR</i> fraction/proportion/percentage «of administered dosage» that reaches blood «plasma»/systemic circulation ✓	Accept "the ability of the drug to be absorbed by the body" OR "the extent to which the drug is absorbed by the body". Do not accept "the amount/quantity of the drug absorbed".	1
16.	b	ii	intravenous injection/IV ✓	Accept "parenterally". Accept "react with alkali/NaOH" OR "convert to ionic form/salt".	1
16.	с	i	One absorption found in both spectra: Any one of: 1050–1410 cm ⁻¹ «C–O in alcohols, esters, ethers» ✓ 1700–1750 cm ⁻¹ «C=O in carboxylic acids, esters» ✓ 2500–3000 cm ⁻¹ «O–H in carboxylic acids» ✓ 2850–3090 cm ⁻¹ «C–H in alkanes, alkenes, arenes» ✓	Award [1 max] if candidate states bonds (C=O in both, O–H in salicylic acid only) but doesn't quote wavelength ranges.	2 max
			One absorption found in only one of the spectra: $3200-3600 \text{ cm}^{-1} \text{ «O-H}$ in alcohols, phenols» \checkmark	Accept a second/additional absorption at 1700–1750 cm ⁻¹ from C=O in ester.	

(Question 16c continued)

Question		on	Answers	Notes	Total
	C	 	Any two of: ring is «sterically» strained OR ring breaks up/opens/reacts «easily» OR amide/amido group «in ring» is «highly» reactive √ «irreversibly» binds/bonds to enzyme/transpeptidase OR inhibits enzyme/transpeptidase «in bacteria» that produces cell walls OR prevents cross-linking of bacterial cell walls √ cells absorb water AND burst OR cells cannot reproduce √	Award [1 max] for "interferes with cell wall production". Do not accept "cell membrane" instead of "cell wall".	2 max

(Question 16c continued)

C	Questi	on	Answers	Notes	Total
16.	С	111	ny two of: ads to «bacterial» resistance/proportion of resistant bacteria increases R ads to penicillinase-producing bacteria ✓		2 max
			damage to/contamination of bodies of water/ecosystems ✓ destroys useful/beneficial bacteria ✓ destroyed bacteria replaced by more harmful bacteria ✓	Accept "endocrine disruptor". Do not accept "increased cost of developing antibiotics".	
16.	с	iv	modify side chain ✓		1
16.	d	i	temporarily bind to/block/interfere with receptor sites in brain OR prevent transmission of pain impulses within CNS/central nervous system √		1
16.	d	ii	codeine has a wider therapeutic window ✓	Accept "codeine has lower activity" OR "codeine has lower risk of overdose" OR "codeine is less potent" OR "codeine has fewer/milder side effects". Do not accept "lower abuse potential for codeine" OR "codeine less addictive" OR "codeine has a lower bioavailability" OR "codeine available without prescription" OR "codeine cheaper".	1

Question		Answers	Notes	Total
16.	e	«pure» enantiomers rotate the plane «of plane-»polarized light «by equal angles» in opposite directions \checkmark		
		Any two of:		
		find angle of rotation of pure enantiomers \checkmark		3 max
		measure angle of rotation of mixture \checkmark		
		mixture has angle between that of two enantiomers \checkmark		
		ratio of angles gives purity ✓		

17.	а	i	$MgCO_3(s) + 2HCl(aq) \rightarrow CO_2(g) + H_2O(l) + MgCl_2(aq)\checkmark$	Do not accept "H ₂ CO ₃ ".	1
17.	a	ii	$n(HCl) = 2 n(CaCO_3) + 2 n(MgCO_3)$ <i>OR</i> $n(HCl) = \frac{2 \times 0.680 \text{ (gs)}}{100.09 \text{ (gmol}^{-1}\text{)}} + \frac{2 \times 0.080 \text{ (gs)}}{84.32 \text{ (gmol}^{-1}\text{)}} \checkmark$ $(n(HCl) = 0.0136 \text{ mol} + 0.0019 \text{ mol} = 0.016 \text{ (mol)} \checkmark$	Award [2] for correct final answer. Award [1 max] for correctly calculating amount of acid neutralized by just CaCO ₃ (0.014 «mol») OR MgCO ₃ (0.002 «mol»).	2
17.	b		inhibits the secretion of stomach acid/H ⁺ \checkmark «active metabolites» bind «irreversibly» to «receptors of the» proton pump \checkmark	Accept "PPI/proton pump inhibitor". Do not award mark for "binds to H2/histamine receptors". (Ranitidine mode of action.) Accept "H*/K* ATPase" for "proton pump".	2

Question		Answers	Notes	Total
18.		blocks/inhibits neuraminidase/NA/«viral» enzyme which allows viruses to pass through cell membrane \checkmark		2
		prevent virus from leaving/escaping host cell «thus it cannot infect other cells» \checkmark		

19.	а	<i>Any two of:</i> radiation causes breaks in DNA chains <i>OR</i> radiation causes errors in DNA sequences ✓ «damage accumulates and» cells cannot multiply ✓ rapidly dividing/cancer cells more susceptible ✓	Accept "alters DNA".	2 max
19.	b	<i>Any two of:</i> radiation source delivered directly to «targeted» cancer cells ✓ by a carrier drug/protein/antibody ✓ several sites in body can be targeted «at same time» ✓		2 max

Question

а

20.

20.

Answers	Notes	Total
«vapour pressure = 0.6 × 17 + 0.4 × 24 =» 19.8 «kPa» ✓		1
<i>Any three of:</i> different molar masses <i>OR</i>		
different strength of intermolecular forces \checkmark		

_	29	_
---	----	---

).	b	Any three of:	
		different molar masses	
		OR	
		different strength of intermolecular forces \checkmark	
		different boiling points \checkmark	
		temperature in «fractionating» column decreases upwards \checkmark	3 max
		«components» condense at different temperatures/heights	
		OR	
		«component with» lower boiling point leaves column first \checkmark	