Markscheme

May 2018

Chemistry

Higher level

Paper 3

This markscheme is the property of the International
Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Section A

Question			Answers	Notes	Total
1.	a	i		Must cut $\mathrm{CH}_{2}-\mathrm{CO}$ bond AND enclose all of the -COOH group.	1
1.	a	ii	Any two of: - $\mathrm{COOH} / \mathrm{CO} / \mathrm{OH} /$ carboxylate/carboxyl/hydroxyl/hydroxy group forms hydrogen bonds/H-bonds to water \checkmark London/dispersion/instantaneous induced dipole-induced dipole forces occur between hydrocarbon chains \checkmark hydrocarbon chain cannot form hydrogen bonds/H-bonds to water \checkmark strong hydrogen bonds/H-bonds between water molecules exclude hydrocarbon chains «from the body of the water» \checkmark	Accept "hydrophilic part/group forms hydrogen bonds/H-bonds to water". Accept "hydrophobic section" instead of "hydrocarbon chain". Award [1 max] for answers based on "the -COOH group being polar AND the hydrocarbon chain being non-polar".	2 max

Question			Answers	Notes	Total
1.	b	i	Above about $240 \mathrm{~cm}^{2}$: greater collision frequency/collisions per second between «palmitic acid» molecules and the barrier «as area reduced» \checkmark At less than about $240 \mathrm{~cm}^{2}$: molecules completely cover the surface OR there is no space between molecules $O R$ force from movable barrier transmitted directly through the molecules to the fixed barrier OR «palmitic acid» molecules are pushed up/down/out of layer \checkmark	For both M1 and M2 accept "particles" for "molecules". For M1 accept "space/area between molecules is reduced" OR "molecules moving closer together".	2
1.	b	ii	$\begin{aligned} & \text { amount of acid }=« 5.0 \times 10^{-5} \mathrm{dm}^{3} \times 0.0034 \mathrm{~mol} \mathrm{dm}^{-3} »=1.7 \times 10^{-7} \text { «mol» } \checkmark \\ & \text { number of molecules }=« 1.7 \times 10^{-7} \mathrm{~mol} \times 6.02 \times 10^{23} \mathrm{~mol}^{-1}=» 1.0 \times 10^{17} \checkmark \end{aligned}$	Award [2] for correct final answer. Award [1] for " $1.0 \times 10^{20 "}$.	2
1.	b	iii	$\text { «area }=\frac{240 \mathrm{~cm}^{2}}{1.0 \times 10^{17}} » 2.4 \times 10^{-15} « \mathrm{~cm}^{2} » \checkmark$		1

Question			Answers	Notes	Total
2.	a		$\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \checkmark$	Accept " $\mathrm{CO}_{2}(\mathrm{aq})$ ".	1
2.	b		measure the volume of gas at different times «plot a graph and extrapolate» OR measure the mass of the reaction mixture at different times «plot a graph and extrapolate» \checkmark	Accept other techniques that yield data which can be plotted and extrapolated.	1
2.	c	i	method 2 AND the marble is in excess «so a little extra has little effect» OR large chips $A N D$ the marble is in excess «so a little extra has little effect» OR method 2 AND HCl is limiting reagent «so a little extra marble has little effect» OR large chips AND HCl is limiting reagent «so a little extra marble has little effect» \checkmark	Accept, as a reason, that "as the mass is greater the percentage variation will be lower".	1
2.	c	ii	surface area OR purity «of the marble» \checkmark	Accept "shape of the chip".	1
2.	d	i	variation of individual values is much greater «than this uncertainty» OR «uncertainty» does not take into account «student» reaction time \checkmark		1
2.	d	ii	« $\frac{121.96 \mathrm{~s}}{2}=60.98 \mathrm{~s} »=61$ «s»		1
2.	d	iii	systematic AND always makes the time shorter «than the actual value» OR systematic AND it is an error in the method used «not an individual measurement» OR systematic AND more repetitions would not reduce the error \checkmark	Accept, as reasons, "it always affects the value in the same direction" OR "the error is consistent".	1

Section B

Option A — Materials

Question			Answers	Notes	Total
3.	a		«close packed» lattice of metal atoms/ions \checkmark no spaces for water molecules to pass though the structure \checkmark		2
3.	b	i	composite \checkmark		1
3.	b	ii	melting point OR permeability OR density OR conductivity OR elasticity/stiffness OR brittleness/flexibility OR «tensile» strength \checkmark	Accept "colour/transparency".	1

(continued...)
(Question 3b continued)

Question			Answers	Notes	Total
3.	b	iii	Any three of: hydrocarbon/carbon-containing gas/compound \checkmark mixed with inert gas \checkmark heat/high temperature \checkmark «transition» metal catalyst \checkmark hydrocarbon/carbon compound decomposes to form carbon «nanotubes» \checkmark nanotubes form on catalyst surface \checkmark	Accept "ethanol" or specific hydrocarbons. Accept " N_{2} ", " H_{2} ", " NH_{3} " or specific inert gases. Accept temperature or range within $600-800{ }^{\circ} \mathrm{C}$. Accept specific metals such as Ni, Co or Fe.	3 max
3.	b	iv	rod shaped molecules \checkmark		1

| Question | | | Answers | Notes |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 4. | \mathbf{a} | \mathbf{i} | both have «long» hydrocarbon chains
 OR
 both have chains comprising CH_{2} units \checkmark
 HDPE has little/no branching AND LDPE has «more» branching \checkmark | Accept "CH2-CH2 units". |
| 4. | a | ii | HDPE is more rigid/less flexible
 OR
 HDPE has a higher melting point
 OR
 HDPE has greater «tensile» strength \checkmark | Accept "HDPE more crystalline". |

Question			Answers	Notes	Total
4.	C	i	six C-atoms $\sqrt{ }$	Accept -COCl instead of -COOH .	2
4.	c	ii	less AND a second molecule/product formed \checkmark	Accept "not all the reactant molecules «in the equation» are converted «to product molecules»".	1
4.	d		Any two of: many types «of plastics» exist OR «plastics» require sorting «by type» \checkmark «plastics» need to be separated from non-plastic materials OR «often» composites/moulded on/bound to non-plastic/other components \checkmark	Accept other valid factors such as thermal decomposition of some plastics, production of toxic fumes, etc.	2
4.	e		«different classifications are appropriate for» different properties/applications/ purposes \checkmark		1

Question			Answers	Notes	Total
5.	a		ratio of electrons : aluminium ions $=3: 1 \checkmark$ amount Al « $\frac{1.296 \times 10^{13} \mathrm{C}}{96500 \mathrm{Cmol}^{-1} \times 3}$ » $=4.48 \times 10^{7}$ «mol» \checkmark mass $\mathrm{Al} «=4.48 \times 10^{7} \mathrm{~mol} \times 26.98 \mathrm{~g} \mathrm{~mol}^{-1} »=1.21 \times 10^{9} « \mathrm{~g} » \checkmark$	Award [3] for correct final answer.	3
5.	b		the smallest repeating unit «from which the crystal structure can be derived» \checkmark	Accept "building block that the structure is made from".	1
5.	c		$\begin{aligned} & « n \lambda=2 d \sin \theta » \\ & 1 \times 1.54 \times 10^{-10}=2 \times d \times \sin 18 \checkmark \\ & d «=\frac{1.54 \times 10^{-10} \mathrm{~m}}{2 \times 0.309} »=2.49 \times 10^{-10} \text { «m» } \end{aligned}$	Award [2] for correct final answer.	2
5.	d	i	type $1 \checkmark$ superconductor \checkmark		2
5.	d	ii	collisions between electrons and «lattice of metal» ions become more frequent OR thermal oscillations/vibrations disrupt the Cooper electron pairs \checkmark		1
5.	e		$\begin{aligned} & K_{\mathrm{sp}}=\left[\mathrm{Al}^{3+}\right]\left[\mathrm{OH}^{-}\right]^{3} «=3.3 \times 10^{-34} » \\ & {\left[\mathrm{Al}^{3+}\right]=« \frac{3.3 \times 10^{-34}}{\left(1 \times 10^{-7}\right)^{3}}=» 3.3 \times 10^{-13} « \mathrm{~mol} \mathrm{dm}} \end{aligned}$	Award [2] for correct final answer.	2

Option B - Biochemistry

Question			Answers	Notes	Total
6.	a		 OR correct structures of Val AND Asn \checkmark correct amide link \checkmark		2
6.	b		Phenylalanine and valine: London/dispersion/instantaneous induced dipole-induced dipole forces OR permanent dipole-induced dipole «interactions» \checkmark Glutamine and asparagine: hydrogen bonds \checkmark	Do not accept dipole-dipole interactions.	2

Question			Answers	Notes	Total
6.	C	i	hydrolysis \checkmark		1
6.	C	ii	compare R_{f} with known amino acids OR compare distance moved with known amino acids \checkmark	Accept "from R_{f} ".	1
6.	d		triplet/genetic code OR sequence of three bases/nucleotides \checkmark instruction for «particular» amino acid \checkmark		2

Question			Answers	Notes	Total
7.	a		hydrolytic «rancidity» \checkmark ester group $\sqrt{ }$	Accept a formula for ester group.	2
7.	b		«stearic acid» straight chain/chain has no kinks/more regular structure OR «stearic acid» saturated/no «carbon-carbon» double bonds \checkmark «stearic acid» chains pack more closely together \checkmark stronger London/dispersion/instantaneous induced dipole-induced dipole forces «between molecules» \checkmark	Accept "«stearic acid» greater surface area/electron density".	3 max
7.	C	i	lowers risk of heart disease/atherosclerosis OR lowers LDL cholesterol OR increases HDL cholesterol OR aids brain/neurological development «in children» OR relieves rheumatoid arthritis \checkmark		1
7.	C	ii	soluble AND non-polar hydrocarbon chain \checkmark	Accept as reasons "«predominantly» non-polar" OR "long hydrocarbon chain".	1

(continued...)
(Question 7c continued)

Question			Answers	Notes	Total
7.	C	iii	not biodegradable OR stored/accumulate in fat \checkmark biomagnification occurs OR concentration increases along food chain \checkmark	Accept "stored/accumulate in bodies of prey/animals eaten". Accept "not excreted".	2
7.	c	iv	add starch/cellulose/carbohydrates/additives/catalysts «to plastic during manufacture to allow digestion by micro-organisms» OR replace traditional plastics with polylactic acid/PLA-based ones OR blend traditional and polylactic acid/PLA-based plastics \checkmark	Accept reference to biodegradable plastics other than PLA, for example polyhydroxyalkanoates (PHA), poly(butylene succinate) (PBS), polybutylene adipate terephthalate (PBAT) and polycaprolactone (PCL).	1

Question		Answers	Notes	Total
8.	a	Glucose: readily passes through intestine wall/dissolves in blood OR is immediately available for energy/respiration OR transported rapidly around body \checkmark Starch: must be hydrolysed/broken down «into smaller molecules» first \checkmark		2
8.	b	Any two of: long straight/unbranched chains \checkmark multiple hydrogen bonds «between chains» \checkmark microfibrils OR rigid/cable structure \checkmark		2 max

Question			Answers	Notes	Total
9.	a		binds at allosteric site OR binds away from active site \checkmark changes shape of active site OR renders active sites ineffective \checkmark		2
9.	b		K_{m} is inverse measure of affinity of enzyme for a substrate OR K_{m} is inversely proportional to enzyme activity OR high value of K_{m} indicates higher substrate concentration needed for enzyme saturation OR low value of K_{m} means reaction is fast at low substrate concentration \checkmark	Idea of inverse relationship must be conveyed. Accept "high value of K_{m} indicates low affinity of enzyme for substrate/less stable ES complex/lower enzyme activity". Accept "low value of K_{m} indicates high affinity of enzyme for substrate/stable ES complex/greater enzyme activity".	1

Question		Answers	Notes	Total
10.	a	highly conjugated systems OR alternating single and double bonds OR many delocalized electrons \checkmark electron transitions occur when visible light is absorbed \checkmark		2
10.	b	gaining protons \checkmark decreases electron density/extent of conjugation «in aromatic backbone» \checkmark increases energy of electron transitions \checkmark		3

Option C — Energy

Question			Answers	Notes	Total
12.	a		Any three of: different molar masses OR different strengths of intermolecular forces \checkmark different boiling points \checkmark temperature in «fractionating» column decreases upwards \checkmark «components» condense at different temperatures/heights OR «component with» lower boiling point leaves column first \checkmark		3 max
12.	b	i	$\begin{aligned} & \text { specific energy «=} \frac{\text { energy released }}{\text { mass consumed }}=\frac{5470 \mathrm{~kJ} \mathrm{~mol}^{-1}}{114.26 \mathrm{~g} \mathrm{~mol}^{-1}} »=47.9 \text { «kJ g}{ }^{-1} » \checkmark \\ & \text { energy density « }=\frac{\text { energy released }}{\text { volume consumed }}=\text { specific energy } \times \text { density }=47.9 \mathrm{~kJ} \mathrm{~g}^{-1} \\ & \times 0.703 \mathrm{~g} \mathrm{~cm}^{-3} »=33.7 \text { «kJ cm }{ }^{-3} » \checkmark \end{aligned}$	Do not accept "-47.9 «kJ g ${ }^{-1}$ »". Do not accept "-33.7 «kJ cm*»" unless "-47.9 «kJ g ${ }^{-1}$ »" already penalized.	2
12.	b	ii	energy is lost «to the surroundings» as heat/sound/friction OR energy is lost to the surroundings «as heat/sound/friction» OR incomplete combustion \checkmark	Do not accept simply "energy is lost".	1

Question		Answers	Notes	Total
13.	a	viscosity «of vegetable oils is too high» \checkmark transesterification OR «conversion into» alkyl/methyl/ethyl esters \checkmark		2
13.	b	$\mathrm{R}-\mathrm{CO}-\mathrm{O}-\mathrm{CH}_{3} / \mathrm{RCOOMe}$ OR $\mathrm{R}-\mathrm{CO}-\mathrm{O}-\mathrm{C}_{2} \mathrm{H}_{5} / \mathrm{RCOOEt} \sqrt{ }$		1

Question			Answers	Notes	Total
14.	a	i		Accept any balanced equation which shows Li oxidized to Li^{+}for M3, such as $\mathrm{LiC}_{6} \rightarrow \mathrm{Li}^{+}+\mathrm{C}_{6}+\mathrm{e}^{-} \quad$ or $\mathrm{Li}_{x} \mathrm{C}_{6} \rightarrow x \mathrm{Li}^{+}+6 \mathrm{C}+x \mathrm{e}^{-}$	3
14.	a	ii	Limiting factor: internal resistance «of the cell» \checkmark Electrodes design: large surface area \checkmark	Accept "time it takes ions to diffuse between electrodes". Accept specific ways of increasing surface area, such as "porous electrodes". Accept "close together/small separation".	2
14.	b	i	mass spectrometry/mass spectroscopy/MS \checkmark	Accept "analysis of radiation emitted".	1
14.	b	ii	uranium converted to uranium hexafluoride/ UF_{6} gas \checkmark ALTERNATIVE 1: gas «allowed to» diffuse $\sqrt{ }$ lower mass isotope/ ${ }^{235} \mathrm{U}$ passes through more rapidly \checkmark ALTERNATIVE 2: use of centrifuge \checkmark higher mass isotope/ ${ }^{238} \mathrm{U}$ moves/closer to outside of centrifuge OR lower mass isotope/ ${ }^{235} \mathrm{U}$ stays $\mathrm{in} /$ removed from middle of centrifuge \checkmark		3

(Question 14b continued)

Question		Answers	Notes		
14.	b	iii	critical mass: mass required so that «on average» each fission/reaction results in a further fission/reaction \checkmark	Accept "minimum mass of fuel needed for the reaction to be self-sustaining". Any two for [2 max]: neutron captured by «235 $\mathrm{U} » ~ n u c l e u s ~$ fission/reaction produces many neutrons/more than one neutron \checkmark if these cause further fission/reaction a chain reaction occurs \checkmark	Accept answers in the form of suitable diagrams/equations.
14.	b	iv	produce long lived/long half-life radioisotopes/radioactivity OR could be used to produce nuclear weapons OR «nuclear» accidents/meltdowns can occur \checkmark	Accept "long lived/long half-life radioactive waste".	

Question		Answers	Notes	Total
15.	a	p-type AND has 3 «valence» electrons OR p-type $A N D$ fewer electrons «than silicon» \checkmark	Do not accept "it is in group 3/13" as reason.	1
15.	b	Any two of: cheaper OR ease of fabrication \checkmark use light of lower energy/lower frequency/longer wavelength \checkmark absorb wider range of wavelengths \checkmark dye converts most/all absorbed photons into electrons \checkmark plentiful/renewable resources «to construct DSSC cells» \checkmark operate at lower «internal» temperatures/better at radiating heat away «since constructed with thin front layer of conductive plastic compared to glass box in photovoltaic cell» \checkmark use of nanoparticles provides large surface area exposure to sunlight/sun/light \checkmark can absorb better under cloudy/low light conditions \checkmark better conductivity \checkmark more flexible \checkmark		2
15.	c	B AND has greater/more «extensive» conjugation \checkmark	Accept "more alternating single and double bonds".	1

Option D - Medicinal chemistry

Question			Answers	Notes	Total
16.	a		Any one of: anticoagulant \checkmark lower risk of heart attack/strokes \checkmark prevent recurrence of heart attack/stroke \checkmark prevent cancer of colon/oesophagus/stomach \checkmark	Accept "prevents/reduces blood clots" OR "blood thinner".	1 max
16.	b	i	fraction/proportion/percentage «of administered dosage» that reaches target «part of human body» OR fraction/proportion/percentage «of administered dosage» that reaches blood «plasma»/systemic circulation \checkmark	Accept "the ability of the drug to be absorbed by the body" OR "the extent to which the drug is absorbed by the body". Do not accept "the amount/quantity of the drug absorbed".	1
16.	b	ii	intravenous injection/IV	Accept "parenterally". Accept "react with alkali/NaOH" OR "convert to ionic form/salt".	1
16.	c	i	One absorption found in both spectra: Any one of: 1050-1410 cm^{-1} «C-O in alcohols, esters, ethers» \checkmark 1700-1750 cm ${ }^{-1}$ «C=O in carboxylic acids, esters» \checkmark 2500-3000 cm^{-1} «O-H in carboxylic acids» \checkmark 2850-3090 cm^{-1} «C-H in alkanes, alkenes, arenes» \checkmark One absorption found in only one of the spectra: 3200-3600 cm ${ }^{-1}$ «O-H in alcohols, phenols» \checkmark	Award [1 max] if candidate states bonds ($\mathrm{C}=\mathrm{O}$ in both, $\mathrm{O}-\mathrm{H}$ in salicylic acid only) but doesn't quote wavelength ranges. Accept a second/additional absorption at $1700-1750 \mathrm{~cm}^{-1}$ from $\mathrm{C}=\mathrm{O}$ in ester.	2 max

(Question 16c continued)

Question			Answers	Notes	Total
16.	c	ii	Any two of: ring is «sterically» strained $O R$ ring breaks up/opens/reacts «easily» OR amide/amido group «in ring» is «highly» reactive \checkmark «irreversibly» binds/bonds to enzyme/transpeptidase OR inhibits enzyme/transpeptidase «in bacteria» that produces cell walls OR prevents cross-linking of bacterial cell walls \checkmark cells absorb water AND burst OR cells cannot reproduce \checkmark	Award [1 max] for "interferes with cell wall production". Do not accept "cell membrane" instead of "cell wall".	2 max

(Question 16c continued)

Question			Answers	Notes	Total
16.	C	iii	Any two of: leads to «bacterial» resistance/proportion of resistant bacteria increases OR leads to penicillinase-producing bacteria \checkmark damage to/contamination of bodies of water/ecosystems \checkmark destroys useful/beneficial bacteria \checkmark destroyed bacteria replaced by more harmful bacteria \checkmark	Accept "endocrine disruptor". Do not accept "increased cost of developing antibiotics".	2 max
16.	C	iv	modify side chain \checkmark		1
16.	d	i	temporarily bind to/block/interfere with receptor sites in brain OR prevent transmission of pain impulses within CNS/central nervous system \checkmark		1
16.	d	ii	codeine has a wider therapeutic window \checkmark	Accept "codeine has lower activity" OR "codeine has lower risk of overdose" OR "codeine is less potent" OR "codeine has fewer/milder side effects". Do not accept "lower abuse potential for codeine" OR "codeine less addictive" OR "codeine has a lower bioavailability" OR "codeine available without prescription" OR "codeine cheaper".	1

| Question | | Answers | Notes | Total |
| :--- | :--- | :--- | :--- | :--- | :---: |
| e | «pure» enantiomers rotate the plane «of plane-»polarized light «by equal angles»
 in opposite directions \checkmark
 Any two of:
 find angle of rotation of pure enantiomers \checkmark
 measure angle of rotation of mixture \checkmark
 mixture has angle between that of two enantiomers \checkmark
 ratio of angles gives purity \checkmark | 3 max | | |

17.	a	i	$\mathrm{MgCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{MgCl}_{2}(\mathrm{aq}) \checkmark$	Do not accept " $\mathrm{H}_{2} \mathrm{CO}_{3}$ ".	1
17.	a	ii	$\mathrm{n}(\mathrm{HCl})=2 \mathrm{n}\left(\mathrm{CaCO}_{3}\right)+2 \mathrm{n}\left(\mathrm{MgCO}_{3}\right)$ OR $\begin{aligned} & n(\mathrm{HCl})=\frac{2 \times 0.680 « \mathrm{~g} »}{100.09 « \mathrm{~g} \mathrm{~mol}^{-1} »}+\frac{2 \times 0.080 \text { «g» }}{84.32 « \mathrm{~g} \mathrm{~mol}^{-1} »} \checkmark \\ & « \mathrm{n}(\mathrm{HCl})=0.0136 \mathrm{~mol}+0.0019 \mathrm{~mol}=» 0.016 « \mathrm{~mol} » \checkmark \end{aligned}$	Award [2] for correct final answer. Award [1 max] for correctly calculating amount of acid neutralized by just CaCO_{3} (0.014 «mol») OR $\mathrm{MgCO}_{3}(0.002$ «mol»).	2
17.	b		inhibits the secretion of stomach acid/ $\mathrm{H}^{+} \checkmark$ «active metabolites» bind «irreversibly» to «receptors of the» proton pump \checkmark	Accept "PPI/proton pump inhibitor". Do not award mark for "binds to H2/histamine receptors". (Ranitidine mode of action.) Accept " H^{+} / K^{+}ATPase" for "proton pump".	2

| Question | | Answers | Total |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 18. | | blocks/inhibits neuraminidase/NA/«viral» enzyme which allows viruses to pass
 through cell membrane \checkmark
 prevent virus from leaving/escaping host cell «thus it cannot infect other cells» \checkmark | Notes |

19.	a		Any two of: radiation causes breaks in DNA chains OR radiation causes errors in DNA sequences \checkmark «damage accumulates and» cells cannot multiply \checkmark rapidly dividing/cancer cells more susceptible \checkmark	Accept "alters DNA".	2 max
19.	b		Any two of: radiation source delivered directly to «targeted» cancer cells \checkmark by a carrier drug/protein/antibody \checkmark several sites in body can be targeted «at same time» \checkmark		2 max

Question		Answers	Notes	Total
20.	a	«vapour pressure $=0.6 \times 17+0.4 \times 24=$ » 19.8 «kPa» \downarrow		1
20.	b	Any three of: different molar masses OR different strength of intermolecular forces \checkmark different boiling points \checkmark temperature in «fractionating» column decreases upwards \checkmark «components» condense at different temperatures/heights OR «component with» lower boiling point leaves column first \checkmark		3 max

